
PHYSICAL REVIEW E 67, 061302 ~2003!
Granular clustering in a hydrodynamic simulation
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We examine the hydrodynamics of a granular gas using numerical simulation. We demonstrate the appear-
ance of shearing and clustering instabilities predicted by linear stability analysis, and show that their appear-
ance is directly related to the inelasticity of collisions in the material. We discuss the rate at which these
instabilities arise and the manner in which clusters grow and merge.
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One of the key differences between a granular mate
and a regular fluid is that the grains of the former lose ene
with each collision, whereas the molecules of the latter
not. Even when the inelasticity of the collisions is small,
can give rise to dramatic effects, such as theMaxwell Demon
effect @1# and, the topic of this paper, the phenomenon
granular clustering. Experiments@2,3# and molecular dynam
ics simulations@4# alike show that low-density collections o
grains ~‘‘granular gases’’! in the absence of gravity do no
become homogeneous with time, but instead form den
clusters of stationary particles surrounded by a lower-den
region of more energetic particles. A kinetic explanation
this behavior is that, when a particle enters a region
slightly higher density, it has more collisions, loses mo
energy, and so is less able to leave that region. This incre
the local density and makes it more likely that addition
particles are captured in the same way.

We are interested in describing this clustering behav
using hydrodynamics. There is considerable work@5# deriv-
ing granular hydrodynamics from kinetic theory, focusing
analytical treatments of the long-wavelength behavior of
system. Goldhirsch and Zanetti@4#, for instance, describe
clustering as the result of a hydrodynamic instability: a
gion of slightly higher density has more collisions, so mo
energy is lost and the region has a lower ‘‘temperature’’@6#.
Less temperature results in less pressure, and this lo
pressure region, in turn, attracts more mass from the
rounding higher-pressure regions. Their paper uses lo
wavelength stability analysis to show that, in a system
hydrodynamic equations similar to Eq.~1! below, higher-
density regions do indeed have lower pressure, fuelling
instability.

In this paper, we study the hydrodynamics of granu
clustering in zero gravity, by using numerical simulatio
Our motivation is to determine whether a coarse-grained
scription, in terms of local particle, momentum, and ene
densities, can be used to treat characteristic behavior
granular materials as a self-contained dynamical system@7#.
We show that the instabilities predicted by linear analysis
arise in our simulations, and discuss how the onset of th
instabilities depends on the inelasticity of collisions in t
material. We also show the manner in which clust
develop.

We begin with a number density fieldr, a flow velocity
field u, and a temperature@6# field T. These are related by
standard set of hydrodynamic equations for granular ma
als, introduced by Haff@8#:
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]~rui !

]t
52“ i P2“ j~ruiuj !1“ j~h i jkl“kul !,

]T

]t
52“ i~uiT!1

1

r
“ i~ k̃“ iT!1

1

r
h i jkl ~“ iuj !~“kul !2g̃T,

~1!

where repeated indices are summed over and whereP is
pressure,k̃ is the bare thermal conductivity, andh i jkl

5h̃(d ikd j l 1d i l dk j1d i j dkl) is the isotropic bare viscosity
tensor. These equations bear much in common with those
normal fluids@9#. The most important addition is that of th
term 2g̃T, which accounts for the inelasticity of collisions
parameterg̃ is proportional to (12r 2), wherer is the coef-
ficient of restitution. Using kinetic theory results@8#, the
transport coefficients are chosen to depend on tempera
and density:

k̃5kT1/2,

h̃5hrT1/2,

g̃5gT1/2. ~2!

Typically, work in granular hydrodynamics is done
low-density regimes, where grains may be treated as p
particles interacting via collisions. When simulating aggreg
tion, however, one must take excluded volume into accou
We do this by introducing a barrier in pressureP(r) at some
maximum ~close-packed! densityr0. This is in addition to
the usual hydrodynamic pressurerT. We choose, in particu-
lar, the simple quadratic form

P5rT1U~r22r0
2!u~r2r0!, ~3!

whereU is a positive parameter,u(x) is the unit step func-
tion, andr0 is the close-packed density. This method, whi
we introduced in an earlier paper@10#, is a simple way to
model the incompressibility of the system at high densit
@11#.

We evaluate our equations in two dimensions using
finite-difference Runge-Kutta method, on a square latt
©2003 The American Physical Society02-1
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with periodic boundary conditions.~See Ref.@12# for more
details.! The lattice spacing is chosen to be large enough
that each site contains a number of grains, and we can
sider the density to be a continuous variable. We start w
random initial conditions r50.110.001r 1(z,x), uz
5r 2(z,x), ux5r 3(z,x), and T5110.1r 4(z,x), where
r i(z,x) are random numbers chosen between21 and 1. The
model’s other parameters for the data presented here arh0
525, k051, U543104, r050.2, andg taking on several
different values. All numbers given here are in dimensionl
units @13#. Our time step in these units isDt51023.

We begin with a system that is 64364 in size. The homo-
geneous state with which we initialize our system is alrea
a solution to the above equations. In this initial homogene
cooling state, the velocity and all gradients vanish, and
temperature decays with time due to the inelasticity. Eq
tion ~1! reduces to

]T

]t
52gT3/2, ~4!

which yields Haff ’s cooling law, T(t)5T(0)(11t/t0)22.
This state is seen universally in simulations@14–17#, but
only initially, for it is unstable to hydrodynamic modes@4#,
resulting in a long-range shear flow followed by the clust
ing instability mentioned above.

Figure 1 shows the decay of the average temperature
function of time in our simulation for three different value
of the inelasticity parameterg. The initial decay approxi-
mately follows the predicted22 exponent~Fig. 2!, while for
later times the temperature decays at a slower rate as
instabilities agitate the system@15,16#. In the limit of low
inelasticity, the maximal rate of decay more closely a
proaches Haff’s predicted inverse-square behavior~Fig. 2!.
~Note, however, that the temperature will not decay at al
a completely elastic system.! In more inelastic systems, th
hydrodynamic instabilities kick in sooner and comprom
the homogeneity of the system. One could characterize
time it takes for the instabilities to emerge by the time

FIG. 1. The evolution of the average temperature of the sys
over time for three different values of the inelasticity parameterg,
on a log-log plot. Note that in our simulations all variables a
considered dimensionless.
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takes for the temperature to reach its fastest decay rate.
ure 3 shows that this onset time decreases with respect to
inelasticity parameter as a power law with an exponent
24/3. One may compare this to the work in Ref.@16#, where
by matching asymptotic limits they conclude that the on
time of instability depends on the inelasticity parameter a
power law with an exponent of22, in the dilute, elastic
limit.

The first instability that is predicted to dominate the h
mogeneous solution is a hydrodynamic shearing mode:

m

FIG. 2. The logarithmic derivative ofT(t); that is,
d(log10T)/d(log10t). This derivative gives the slope of the lines
the first graph, or equivalently, the exponent of the power-law de
rate. Despite appearances, the curves on the right side of the se
graph are approaching maxima, not asymptotes.~The g550 curve
does not converge to a constant value even throught51000, which
is as long as our simulations have run.! The inset shows that the
maximum power-law decay rate~i.e., the minima of each curve in
the main graph! approaches the predicted value of22 as the system
becomes more elastic, asg0.3.

FIG. 3. The time at which the decay rate of the temperat
reaches maximum, as a function ofg. The errors are rounding
errors due to the finite sample rate. The onset time seems to de
on the inelasticity parameter according to a power law with ex
nent21.3060.02.
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bands of material moving in opposite directions. This h
been seen in several molecular dynamic simulations@14,17#;
Fig. 4 shows how it has developed in our system as
horizontal shear bands. Figure 5 shows that our system
velops a clustering instability as well. Note that the sing
cluster takes on a compact shape, which is surprising g
that there is no surface tension in our model. If clusters
supposed to grow by accretion, then one would expec
ramified structure. If we consider a larger system, as in F
6, we find that several compact clusters form in the sa
manner as that in Fig. 5. As time goes on, however, th
clusters reach out to their neighbors, stretching into the m
stringlike forms seen in simulation@4#. In hindsight, we are

FIG. 4. A flow diagram forg550 att5450. Each arrow repre
sents the average velocity of four lattice sites to improve readab

FIG. 5. The density distribution for theg550 system at time
t5100.
06130
s

o
e-

n
re
a
.
e
e

re

able to see this behavior in the smaller system as well, wh
the single cluster interacts with itself through the period
boundaries.

Finally, to demonstrate that this clustering instability
the result of the inelastic parameter, we compare the widt
the density distribution for inelastic systems with the dist
bution for the elastic caseg50 ~Fig. 7!. In the absence of
inelasticity, the density distribution collapses to a delta fun
tion, indicating complete homogeneity.

Our results show that the shearing and clustering insta
ties, identified by Goldhirsch and Zanetti using a simplifi
version of the above equations, exist in the complete non

y.

FIG. 6. The density distribution for a large (1283128) system
at several times during its evolution.

FIG. 7. The width of the density distributions~i.e., rmax

2rmin) for several values ofg, including the elastic caseg50.
Notice that the density distribution is collapsing to a delta funct
in the elastic case, approaching complete homogeneity, while
inelastic systems show broadening density distributions due to
clustering instability.
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ear granular hydrodynamic equations~1!. Haff’s cooling law
is obeyed in the limit of small inelasticity, but, in general, t
instabilities become relevant before the system has a ch
to completely homogenize. The power-law dependence
the onset time for these instabilities on the inelasticity, a
the24/3 exponent in particular, are interesting; we have
found any reference to these in the literature. Also interes
is the way in which these clusters develop from comp
structures into networks that span the system. It is not c
whether an individual cluster begins to stretch out becaus
re
e
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the proximity of its neighbors, or because of effects due to
increasing surface size. One can imagine that the behavio
this system could change as we alter the total amoun
mass in the system.
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